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Accelerations exceeding 20 g in surface waves have been observed both in 
experiments and in numerically computed flows with a free surface. The present 
paper describes a family of analytic solutions which display such behaviour. They are 
expressible in parametric form as 

z = F sinh w + iG cosh w + yo +iH, 
where F ,  G and H are functions of the time t only, and y is linear in t. w is a complex 
parameter which is real at the free surface. The functions F( t )  and C(t )  satisfy two 
nonlinear, coupled ODES, which can be solved numerically. Typically the solutions 
pass through an ‘inertial shock’, or singularity in the time, where the displacements 
vary as ti, the velocities as t-f and the accelerations as t-:. In this class of solution the 
free surface develops a cusp as t + 00. In  a special case, F and C vary as 8 and the 
cusp is reached in finite time. Gravity is neglected, but plays a part in setting up the 
initial conditions for the highly accelerated flow. 

In future papers it will be shown that more general solutions exist in which the 
acceleration is momentarily large but bounded. 

1. Introduction 
Some interesting examples of very high accelerations occurring in surface gravity 

waves were recently reported by Cooker & Peregrine (1990) ; see also Peregrine & 
Cooker (1991). Their numerical calculations of steep waves meeting a vertical wall (or 
of two such opposite waves meeting) show that the formation of a wave trough near 
the wall is sometimes followed surprisingly by a thin vertical jet which shoots 
upwards with accelerations typically of 20-50 g, and occasionally as greet as 1000 g 
(Peregrine & Cooker 1991). The jet is accompanied by correspondingly large 
pressures and pressure gradients at  the wall itself. 

Upward-pointing jets induced by solitary waves meeting a wall have also been 
recorded experimentally by Nishimura & Takewaka (1990). Such jets are often seen 
against the bow of a ship. It is likely that the axial jets seen in standing waves and 
collapsing bubbles (Longuet-Higgins 1983 c) are closely related. 

In spite of these calculations and observations, there is little understanding of the 
phenomenon, or of the range of conditions under which it occurs. For this purpose, 
purely numerical calculations are inadequate, and cannot always describe accurately 
the asymptotic form of the fluid flow when the free surface develops a sharp 
curvature. What is required is an analytic solution which can unify the different 
numerical computations and define the asymptotic behaviour of the flow. 

Exact solutions for time-dependent flows with a free surface are rare. A flow which 
has some of the appropriate features is the ‘Dirichlet hyperbola’; see Longuet- 
Higgins (1972). In this flow the free surface has the form of hyperbola with varying 
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angle 0 between the asymptotes. When 8 approaches 90°, the velocity and 
acceleration become infinite, like t-i and t-4 respectively, where t is the time measured 
from the critical instant. A physical explanation has been given by Longuet-Higgins 
(1983~) .  There are two weaknesses in this solution, however. One is the very 
restricted form of the free surface, which does not allow the formation of a cusp - 
only a thin, ultimately parabolic, jet as t+ 00. Secondly, it is not immediately clear 
how the solution is to pass through the infinity at  time t = 0. 

These considerations prompted the author to search for a more general analytic 
solution. In this and two companion papers use is made of a parametric 
representation of irrotational flow first suggested by John (1953). The representation 
is sometimes called ‘semi-Lagrangian ’. The present author has already expressed the 
Dirichlet hyperbola and its extension to a rotating free surface, in a semi-Lagrangian 
form; see Longuet-Higgins (1983a, b) .  With this representation, as is shown in the 
present paper, it  is a simple matter to generalize the Dirichlet hyperbola by adding 
an extra term linear in w and t .  This has a non-trivial effect; for example it makes 
possible the formation of a cusp at  the free surface. It also gives rise to a beautiful 
family of solutions which have the principally desired feature, the occurrence of an 
inertial shock at  a certain instant. It can be shown, moreover, that by the addition 
of two further terms the infinite pressure and acceleration are replaced by 
momentarily large but finite values (see $13 below). 

The plan of the present paper is as follows. Since it may be convenient for many 
readers, a brief introduction to the semi-Lagrangian representation is given in $2. In 
the following section we give the expression for the Dirichlet hyperbola in semi- 
Lagrangian form, and in $4  state the first generalization. It is shown that this leads 
to two coupled, nonlinear, ordinary differential equations for the coefficients F(t)  and 
G(t)  as functions of the time. One of these equations (equation (4.10)) follows from 
the free-surface condition, the other, (4.11), from the condition that the flow be free 
of singularities within the fluid. In  $5 we see that in the simplest case, (4.10) leads to 
a simple mapping of the trajectories in the (F,  G)-plane. The time-dependence of the 
solutions is described in $6, including the mapping of the ‘shock line’. In $ 7  we 
describe the behaviour of the solutions in the neighbourhood of the shock line, and 
show that F and G behave like t: there, just as for the Dirichlet hyperbola. There is 
one exceptional trajectory ($ 10) where the time-dependence is like 8. Knowing this 
behaviour one can integrate up to and across the shock line without difficulty ($8). 
The mapping of the solutions in the general case is described in $9 11 and 12. Section 
13 contains some discussion and an indication of further developments. 

2. Parametric representation 
The basis of the following analysis is the semi-Lagrangian method of representing 

any time-dependent, irrotational, free-surface flow in two dimensions (x, y). In this 
representation, both the complex coordinate z = x+ iy and the complex velocity 
potential x = #+i$ are given in terms of a complex parameter w ,  and the time t .  
Thus we let 

2 = z(w, t ) ,  x = x(w, t ) ,  (2-1) 

where z and x are analytic functions of w. On the free surface, where the pressure is 
constant, it is supposed (i) that w is real and (ii) that w is a Lagrangian coordinate, 
that is w is constant following a particle. Hence the velocity vector (u, v) is given by 

u+iv = z t ( u ,  t ) ,  w real, ( 2 . 2 )  
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a subscript denoting partial differentiation. Moreover, the particle acceleration a t  the 
surface is ztt(w, t ) ,  and since the pressure gradient has to be normal to the free surface 
it follows from the equations of motion that the acceleration vector ztt is normal to 
the free surface, gravity being neglected, or in the frame of reference in free-fall. But 
the tangent to the free surface is in the direction of z,(w,t). Hence the free-surface 
condition may be written 

where R(w, t )  is some function of w and t which is real at the free surface. 

ztt = iRz,, (2.3) 

In  the interior of the fluid where w is not real, (2.2) does not apply, but rather 

u+iv = zt (w* , t )  (2.4) 
where an asterisk denotes the complex conjugate. The reason for this requirement is 
immediately clear, for then we have 

dx/dz = u-iv = z f ( w , t ) ,  (2.5) 

where z* denotes the complex conjugate function to z. Hence 

Both sides being now functions of w and not involving 
respect to w to obtain in general 

x = $ ( w ,  t)  z,(w, t )  dw. s 

(2.6) 

w*, we may integrate with 

An important subsidiary condition is the following. Generally, the coordinate 
transformation represented by z(w,  t)  is regular, z being an analytic function of w and 
t .  However, there will usually be singularities, the simplest of which occurs when 
z, = 0, say when z = zo. In  the neighbourhood of such a point 

( z - z o )  = ( w - ~ , ) z , + ~ ( w - w o ) 2 z , +  .... (2.8) 

Since z, vanishes, we see that 
( w - w o )  oc ( z - zo ) i  

so that the velocity field (u- iv), represented by z:(w, t) has a branch point unless 
zf (w,  t )  also has a similar singularity, that is to say 

zf, = 0 when w = wo. (2.10) 

The condition (2.10), which is applied at one or more points inside the fluid, will 
be seen to play a vital role in the following solutions. 

3. The Dirichlet hyperbola 
One interesting solution to the equations in $2 is given by 

z = Fsinhw+iGcoshw 

(see Longuet-Higgins 1983a, b ) ,  F and G being real functions of the time only. For 
then 

ztt = F sinh w + ic" cosh o, (3.2) 
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where a prime denotes d/dt, while 

z, = F cosh o + iG sinh w. 

F = -RG, G = RF. (3.4) 

(3-3) 

Hence the boundary condition (2.3) is satisfied provided that 

On eliminating R from these equations we have 

F F + G G  = 0. (3.5) 

As for the interior condition, it is clear from (3.3) that z, will vanish on the axis 
of symmetry (w pure imaginary) when 

f G  
(F2 + G2)i 

cosho = 
f iF 

( ~ 2  + ~ 2 ) :  ’ 
sinhw = (3.6) 

and so z = f i(F2 + G2)” (3.7) 

z:t = F cosh w - ic’ sinh o. 

However, we have also from (3.3) that 

( 3 4  

The zeros of z : ~  therefore coincide with those of x, provided that 

F/F = -G’/G, (3-9) 

that is 

or 

F G + F G  = 0 

F C  = constant. 

(3.10) 

(3.11) 

From the two equations (3.4) and (3.11) a differential equation for R(t)  and hence 
F and G can be obtained (see Longuet-Higgins 1983b). An alternative method is 
given in Appendix A. 

The free surface corresponding to (3.1) is clearly a hyperbola: 

(3.12) 

with semi-axes equal to F and G respectively. The branch points (3.7) are at the two 
foci, and both are annulled by the condition (3.11). 

We remark that since the fluid is on one side only of the free surface, it is really 
unnecessarily to annul both of the branch points; only the branch point within the 
fluid itself need be annulled. Hence we suspect the existence of a more general 
analytic expression of this type in which only one branch point is annulled. 

4. A first generalization 

hand side of (3.1) a term linear in both w and t .  Thus let 
The key to a more general type of solution than that of 93 is to add to the right- 

z = Fsinhw+iGcosho+yw+iH, (4.1) 

where y = a+& (4.2) 
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a! and /3 being real constants, and H a function of the time only, to be determined. 
Then we have 

ztt = F sinh w + i G  cosh w + i W  (4.3) 

and z, = Fcoshw+iGsinhw+y. (4.4) 

F = - R G ,  G = R F  (4.5) 

as before, and further H = R(a+/3t). (4.6) 

Equation (2.3) is therefore satisfied provided that 

Clearly H" represents an additional upward acceleration of the fluid as a whole. 

must be annulled by a zero of 
To free the flow of branch points, any zeros of z, (equation (4.4)) that lie in the fluid 

zzt = F cosh w -  iQ' sinh w + p, (4.7) 

since /3 = y' by (4.2). Thus we have two equations in ew: 

1 (4-8) 
22, = (F+iG)eW+2y+(B'-iG)e-" = 0, 

22; = (F'-iG)eW+2/?+(F'+iG)e-" = 0, 

which must share at least one common root. The condition for this is the vanishing 
of the discriminant of the two equations, that is 

I (F+iG) 2Y (F - iG) 0 1  
(F'-iG) 2/? ( F + i G )  

(F + iG) 2Y (F - iG) (4.9) 

I 0  (F'-iG') 2/3 (F'+iG)l 

(Equation (4.9) may be derived by multiplying each of (4.8) by ew and then 
eliminating e2(", ew, 1 and e-, from all four equations.) 

Though apparently possessing both real and imaginary parts, the determinant can 
be seen to be purely real. For, if we interchange the third and fourth rows, the 
resulting determinant has rotational symmetry about its central point except that i 
is replaced by -i. The determinant thus equals its complex conjugate, and so is real. 

@ (F'G+FG)2-( /3F-yE")2-(PG+yG)a = 0. (4.10) 

This is a nonlinear, ordinary differential equation relating P and G. In  addition, we 
have the second-order equation 

F F + G G = O  (4.11) 

as before, obtained by eliminating R from (4.5). If F and G can be determined from 
(4.10) and (4.11) we can then find R from either of equations (4.5). Then H is found 
by integrating (4.6) twice with respect to t. 

The branch points of the representation z(w, t )  correspond to the two zeros of z,, see 
(4.8). These are 

ew = [-y+i(F2+Ga-yz)~]/(F+iG). (4.12) 

Since lewl = 1, w is pure imaginary. Hence z ,  given by (4.1) reduces to 

On expansion we find 

z = +i(F2+G2-y2)a+yw+iH. (4.13) 
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FIGURE 1. (a) A typical profile of the free surface oorresponding to (4.1), showing the two branch 
points corresponding to zeros of z,. (F = - 1.5, a = -0.8.) (b )  Streamlines corresponding to the 
solution of (a) when (2.10) is satisfied at the lower branch point. (3” = 1.0, G = -2.0598.) 

Provided (Fa + G2 - ya) > 0, z also is pure imaginary, and the branch points lie on the 
imaginary axis (see figure la). This axis intersects the surface at  w = 0, x = i(G+H). 
Thus provided ( F 2 - y 2 )  > 0 one of the branch points always lies ‘above’ the free 
surface, and one ‘below’ the suflace, so it is the negative branch point that is to be 
excluded. 
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From (4.1) it will be seen that when ( F + y )  = 0, then for small values of the 
parameter o we have 

x = +Fw3, y = G(1 +$w2) +H,  (4.14) 

so the free surface (w real) develops a cusp. Generally, for small w ,  we have x, = F+ y 
whereas for large w ,  x, will have the same sign as F .  Hence the range - y < F < 0 
must be excluded since the free surface would then have a loop. 

5. Map of the solutions: p = 0 

reduces to 
To fix the ideas, let us take first the simplest case: p = 0. Equation (4.10) then 

@ (F’G+FG’)2-2(F’2+G2) = 0,  (5.1) 

that is (G2-~2)P’2+2FGF’G+(F2-~2)G2 = 0. (5-2)  

For any given values of F and G this defines in general two directions in the ( F ,  G)- 
plane given by 

F‘ 
G G2 - a2 

-FG & a(Fz  -t G2 - a2)i 
(5.3) 

provided that F2+G2-a2 2 0. (5-4) 

- - _  

Assuming a to be positive, the set of directions corresponding to the positive sign in 
(5.3) is shown in figure 2. The circular region in the centre is excluded by (5.4). The 
pattern clearly has a 4-fold rotational symmetry about the origin. 

The set of directions corresponding to the negative sign in (5.3) is exactly similar 
to figure 2, but with the opposite direction of rotation; the two patterns are mirror 
images of each other. 

Equation (5.2) or its solution (5.3) is in fact the condition that at least one of the 
zeros of x, be annulled by one of the zeros of z:~. Now the zeros of z:~ are given, as 
in (4.12), by 

(5.5) 

and when p = 0 it is evident that the two roots cannot both annul roots of (4.12) (in 
which y = a) except in the special case a = 0. Thus in general, only one root of the 
roots of z, = 0 is annulled. It turns out that choosing the plus sign in (5.3) always 
annuls the singularity below the free surface (see figure 1) while choosing the minus 
sign annuls the singularity above the free surface. We shall be concerned only with 
the former case, for which the pattern of directions is as in figure 2. 

It should be noted that while the subsidiary condition (2.10) is satisfied exactly at 
all times, this removes only the principal part of the singularity a t  z, = 0. I n  figure 
l ( 6 )  we have plotted the instantaneous streamlines for a solution in which the free 
surface is as in figure 1 ( a ) .  This shows that on the part of the axis of symmetry below 
the branch point the streamlines are very nearly, but not quite, parallel to the axis. 
To accommodate the flow, we must assume a weak line sink along the y-axis between 
the branch point and y = - 03. Thus, while the solution is not exact in this respect, 
it appears as a very good approximation. 

We are interested especially in flows that develop upward-pointing cusps, without 
loops. This implies that, over some part of the trajectory, F < -a and G < 0. Clearly 
the trajectories of interest are confined to the region - co < F < -a, - 00 < G < a 
shown in figure 3. 

ew = [ - /3 f i ( F 2  + Gf2 - p2);]/(F’ - iG)  
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G 
a 
- 

- 4  -2 0 2 4 

F l a  
FIGURE 2. Directions of the trajectories of the coefficients F and G in the (F,  G)-plane. 

-4  -3  - 2  - 1  0 

F l a  
FIGURE 3. Trajectories of ( F , G )  in the relevant part of the plane: F < -a, C < 1. 

The trajectories are of three types. Type A starts from F = - CQ, G - a and 
becomes asymptotic to the cusp line F = -a,  G < 0. Each trajectory crosses the 
G-axis a t  some point (Fo, 0) between - co and -a. 

Type B also starts from F = - CQ, G - a, but crosses the cusp line F = -a at some 
point where G > 0. 
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Type C, the 'critical trajectory', is intermediate between Types A and B. It 
touches the cusp line F = -a at G = 0. The section of the line F = 0, G < 0 should 
also be considered as part of this trajectory. 

6. Time-dependence of the solutions 

differentiate (5.1) with respect to the time to obtain 

where 

To solve the two coupled equations (4.11) and (5.1) for F( t )  and G(t) we may first 

A F + B G + C  = 0, (6.1) 

A = (F 'G+FG)G-a2F,  B = (F 'G+FG)F-a2G,  C = (FG+FG')2F'G.  
(6.2) 

R = C / A  (6.3) 

where A = (AG-BF) = (F'G+FG')(G2--F2)-a2(F'G-FG'). (6.4) 

Substituting for F and G from (4.5) we find 

Then F ,  G" and H" are found from (4.5) and (4.6). Choosing initial values of F, G, 
F' and G to satisfy (5.1) a t  a given time t = to we can then integrate forwards (or 
backwards) to determine these quantities as functions oft. 

As one would anticipate from the case a = 0, the solution develops a singularity at  
a finite time t = t, at which time A vanishes and R becomes infinite. An explanation 
can be given as follows. If we think of (F ,G)  as coordinates of a particle in the 
( F )  G)-plane, then (F", G") is the vector acceleration of the particle. Equation (4.11) 
then states that the radial component of the acceleration vanishes. Thus the particle 
moves as a small heavy steel ball in a thin, frictionless tube which is constrained to 
rotate about the origin (0,O). 

Suppose the particle moves on a curved trajectory. If the curvature and the 
velocity are both non-vanishing, the particle has a non-zero acceleration normal to 
the trajectory. A crisis must therefore occur when the normal to the trajectory passes 
through the origin, that is when 

FF'+CG = 0. (6.5) 

As confirmation, note that by (5.1) 

a2 = ( F G  +FG)2/ (F'2  + G2). 
Hence on substitution in (6.4) we find, after some simplification, 

A = (FG+F'G) (F2F'2-G2G2) / (F2+G2) .  (6.7) 

So by (6.2) and (6.3) 
2F'G(Ff2+G2) 

(FF' + GG') (FF- G G )  . 
R =  

Clearly R becomes infinite when ( F F  + Gal)  = 0 and if FG'  is not zero, in accordance 
with (6.5). 

To interpret the second factor in the denominator, note that on the critical circle 

P + G 2  = a2 

(FF' - GG)' = 0. 

we have, again by (5.1) or (6.6), 
(6.9) 

(6.10) 



458 M .  S. Longuet-Higgins 

Thus the critical circle is also part of the locus A = 0 or of R = a. However, it lies 
outside the region of interest for us. 

Lastly we note that a general expression for the curvature K of the trajectory is 

So on substitution for F and G from (4.5), 

Hence 

FF' + GG' 
K =  ( F 2  + G'2): R' 

Kq3 

FF' + GG' ' 
R =  

(6.11) 

(6.12) 

(6.13) 

where q is the 'velocity ' (P + G2)i. Hence if neither K nor q vanishes, R must become 
infinite when (6.5) is satisfied. 

A physical interpretation of the singularity in terms of the fluid flow was 
previously given by Longuet-Higgins (1983~)  in the special case CI = 0. Essentially 
what occurs is an inertial shock necessitated by the kinematics of the flow field, 
combined with the local form of the free surface. For this reason it is appropriate to 
call the locus (FF'+GG) = 0 the 'shock line'. It is of course a line drawn in the ( F ,  
G)-plane, not in physical space. 

In the next section we investigate the behaviour of F ( t )  and G(t)  in the 
neighbourhood of the shock line. 

7. Neighbourhood of the shock line 
In the neighbourhood of the shock line let us write 

G = G,+7 F = Fc+5, 

where the suffix c denotes values on the shock-line itself, and ( 5 , ~ )  are of order €01, 
say, where 6 < 1. Substituting in (5.1) we have then 

Q, [(G, + 7)'- a2] &" + 2(FC + 5) (G, + 7) 57' + [(Fc + 5)"-'] f 2  = 0. (7.2) 

Solving for f / y '  as before, and retaining terms of order eo and e1 only we find 

f / y '  = a+b[+cq,  (7-3) 

d - F G  uF-GD aG - FD 2G(FG - OD) 
where a = G2-a2 ' b =  (G2 - a2) D ' C =  (Gz - a 2 ) D  + (G2 - a2)2 (7.4) 

and we have written D = (P + G2 - &, suppressing the suffices. After some 
reduction we find that 

c = ab. (7.5) 

Suppose now that on the trajectory 6 is expanded in a Taylor series in 7: 

E = a7+ahy2+. . . , 

where h is a constant to be determined. This implies that 
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But from (7.3) we have, to order 8, 

&/$ = a + ( a b + c ) y .  

h = ab+c = 2ab Therefore 

by (7.5). Altogether then we have 

on the trajectory. 
5 = ay+aby2 

On the other hand from (4.11) we have 

( F c + < ) C + ( G c + y )  = 0 .  

But from (7.6) cy = (a+hy)  y”+hy’? 

459 

(7.10) 

(7.11) 

(7.12) 

Substituting for if‘ in (7.7) and noting that the lowest-order terms must vanish, i.e. 

uF,+G, = 0,  (7.13) 

we obtain correct to order 2 the equation 

( a 2 + h E ’ , + 1 ) y y ” + ~ , y t 2  = 0 

for y( t ) .  The only solution that vanishes as t - t t ,  is 

(7.14) 

y = v ( t - t , ) n  (7.15) 

where n =  a2+hF,+1 - a2+2abFc+l 
aB+2@, + 1 - aa + 4dFC + 1 ‘ 

(7.16) 

Now from the expressions for a and b given in (7.4) it is straightforward to establish 
the identity 

aa+l  = 2abF. (7.17) 
From (7.16) it then follows that 

n = 2  3’ (7.18) 

Thus we have shown that, in the neighbourhood of the shock line, F and G tend 
to finite values F, and Go, but that velocities, like B” and G ,  become infinite (t-t,)-f; 
the accelerations and the pressure behave like ( t  - tc)-g. This generalizes the results 
previously obtained in the case OL = 0 (Longuet-Higgins 1972). 

8. Integrating through the shock line 
As a consequence of the analysis in 3 7, we now have a method of continuing the 

integration of F and G through the singularity. For, when sufficiently close to the 
shock line we have from (6.2) and (6.3), since F ,  G K t t ,  

Hence 

Thus A3 behaves linearly with t ,  so by linear extrapolation of As in the neighbourhood 
of A = 0 we can determine accurately the critical instant t,. 

Then, if F( t )  and G ( t )  are integrated up to a time t,, say, close to t,, we can find the 
value F, of F a t  the critical time by linear extrapolation of F with respect to (t - t,);, 
Having found F, and likewise G, we can cross over to the time 

t ,  = 2 4  - t, (8.3) 
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-0.2 

-0.4 

0 0.1 0.2 0.3 

t 
FIGURE 4. The behaviour of A and A3 in the neighbourhood of 1 = t, for the typical trajectory 

(Fo,Go) = (-1.3,0), Po = 1.0. 

on the far side of the singularity by taking 

W 2 )  = W c ) - - F ( t , ) ,  W 2 )  = -F#l), (8.4) 
and similarly for G(t,) and G ( t , ) .  Step-by-step integration can then start again from 

Figure 4 shows the result of this procedure for a typical trajectory of Type A, when 
Fo = - 1.30 and Fh = 1.0. Both A and A3 are plotted as functions of t .  It will be seen 
that the graph of A vs. t is that of a typical cubic curve, and that A3 behaves smoothly 
and linearly versus the time. 

t = t,. 

The corresponding velocity yt = G'+H' (8.5) 

and acceleration yttt = G t H "  (8.6) 

of the surface particle w = 0 are shown in figure 5.  In  the limit as t+tt,, ytt is 
symmetric about t = t,, and ytt is antisymmetric. The pressure gradient p y  is similar 
to Ytt. 

As a practical point we mention that sufficiently close to t = t, it is convenient to 
take time increments dt corresponding to equal increments of the function f = In A. 
Since (t-t,) oc A3 this implies that 

dt oc 3(t-t t , ldf~ It-tcl. (8.7) 
The time steps in the integration were reduced until the results converged 

sufficiently accurately. Typically, as in figures 4-6, dt was taken as 0.5 x lo-*. In the 
neighbourhood of the shock line, defined by lAl < 0.005, dt was chosen to correspond 
to increments 0.005 in lnd.  The limiting t ,  was chosen to be the first instant at which 
Idle lo-*. On the far side of the shock line (t > t2) the procedure was reversed. Note 
that since t, and t, were not round numbers, neither were the chosen times t, for 
t > t,. 
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FIQURE 5. The vertical velocity yt and acceleration ytt of the surface particle w = 0 in the 

neighbourhood of t = t,, for the trajectory (Fo, Go) = ( - 1.3,0), Fo = 1.0. 

9. Typical solutions, Types A and B 
Figure 6 shows a sequence of surface profiles for the Type A trajectory F, = - 1.3. 

These were obtained by integrating backwards from t = 0, when (F, G )  = (F,, O ) ,  
Fh = 1,  to t = -5, and then forwards from t = 0 (with the same initial conditions) 
to about t = 0.5. 

For large negative values of t  we may show that 

F(t )  - c- t+a, +a, t-l+a,t-Z+. . . 
G ( t )  - a+ b, t - l+  b,t? + . . . , 

where a, and b, are constants. Thus the gradient of the surface at  w = & co, namely 
G/FI, tends to zero like 1tl-l. When t = - 00 the surface becomes flat. 

As t increases from - co to about - 1 the value of G/lFl increases to a maximum, 
and the surface develops a hollow, as in figure 6 (a), with maximum gradient of about 
13' when t = - 1.  Then the gradient decreases to zero at  t = 0, when (F ,  G )  crosses the 
axis G = 0;  the hollow 'fills up' and the surface is plane; see figure 6 ( b ) .  The particle 
velocities, however, do not vanish. The velocity vectors are shown at various points 
along the surface. 

For positive values oft (figure 6c) the surface becomes convex, and since G < 0 the 
gradient at  infinity is negative. The shock line is crossed at time t ,  = 0.14866. As 
shown by the velocity vectors, the velocity undergoes a sharp kick, resulting in an 
S-shaped trajectory for each particle (see figures 6d and 12 b) .  

As t increases beyond t, the surface develops a sharp curvature at  the crest; see 
figure 6(c). It may be shown that for large positive times t 

F( t )  - - a+a, t-l +a, t-, + . . . , 
G ( t )  - C ,  t+ b,+b,t-'+ b,t- '+.  . . . 
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t = o  

- 10 0 10 

FIGURE 6 (a, b ) .  For caption see facing page. 

The condition for a cusp, F = --cr, is not attained in finite time, but only in the limit 
as t +  00. Nevertheless the form of the surface is quite close to a cusp even at 
moderately large times t .  

Figure 7 shows a similar sequence of profiles for a typical trajectory of Type B, 
which does not cross the axis G = 0. Thus G is always positive and the surface is 
always concave. The profiles were obtained by integrating backwards and forwards 
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FIGURE 6. A sequence of surface profiles for the Type A solution (Fo, Go) = ( -  1.3,0), 8'; = 1, 
H ,  = 0, H i  = 10.0. (a)  -5 < t < -1; (b )  -1  < t C 0, and ( c )  0 < t < 0.4532. Velocity vectors are 
marked for the particles at w = -5.0 (0.25) 5.0. (d )  Typical paths of particles in the free surface. 

from time t = 0 (say) with initial conditions (F ,  G )  = (-2.0,0.8), Fk = 1. The 
behaviour as t+- OC) is similar to that in Type A trajectory; see (9.1). As t increases 
from - co the surface gradient s, at w = 00 again increases, so that a hollow 
develops. The cusp line is always reached in finite time in this type of trajectory but 
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the cusp points downwards. Beyond P = -a, the surface profile develops a loop, and 
the solution becomes unphysical. What happens in practice may be that the sharp 
cusp entrains some air below the water surface at this point. 

The third type of trajectory, which is intermediate between Types A and B will be 
discussed in the following section. 
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10. Type C: the critical trajectory 
By definition, the critical trajectory is the unique trajectory passing through the 

point (F ,  G) = ( -a ,  0);  see figure 3. 
To integrate the solution we must first determine the behaviour of F( t )  and G(t)  

near (-a,O). This point lies on the shock line (F’G+FG) = 0, the cusp line F = -a 
and the critical circle P2 + G2 = 2. Following the method of 3 7 by writing 

F = - a ( l + f ) ,  G = a y ,  (10.1) 

where now E,  9 are of order e2 and E respectively, and substituting in (5.1) and setting 
a = 1 we obtain, to lowest order in e, 

@ = - 5‘2 + 295‘9’+ 2[7‘2 = 0. (10.2) 

Now assuming 6 = &2, g = hyv’, (10.3) 

where h is a constant to be determined, we have from (10.2) that 

( - A292 + 2h92 + hy2) 9’2 = 0. (10.4) 

Hence h2-3h = 0 (10.5) 

so h = 0 or 3. (10.6) 

The solution h = 0 applies to the part of the trajectory consisting of the line F = -a, 
- cc < G < 0, and will be considered later. The solution h = 3 is the first term in the 
expansion 

(10.7) 

which can be used for starting the integration of (F ,Q)  along the part of the 
trajectory corresponding to t < 0. 

[ = 3 2 + f i  12393 6 2 7  5 6 7 l 4 + T m 7  +..., 

In addition we have from (4.11) and (7.1) 

(l+E)y+++” = 0. 

(=ha 
To lowest order, (10.7) and (10.8) reduce to 

and 5”+77” = 0 

(10.8) 

(10.9) 

(10.10) 

respectively. Differentiating (10.9) twice with respect to t and substituting in (10.10) 
gives 

The general solution of (10.11) tending to 0 as t 4 0 is 

479” + 37!2 = 0. (10.11) 

7 = ct” (10.12) 

where 

Hence 

Thus we have 

(10.13) 

(10.14) 

(10.15) 

(10.16) 
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Thus the approach to the shock line is still described by a power law, but the powers 
are different from the general case. 

The sequence of surface profiles is shown in figure 8. Again, as t < - 00 the surface 
is plane. As t increases the surface becomes concave upwards, with a maximum 

- - 
I I I I I I I  1 1 1 1  I 1  

gradient at 00 given by 
- 

s,, = (G/lFl)max = tan 18.6' (10.17) 

when t = -0.56. As t - to  the surface again reverts to a plane (figure 8 b ) ,  but with a 
non-zero velocity field. In  this case, therefore, it appears that the cusp line is reached 
in finite time. 
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1 I I I 1 1 1 1 1  I , '  
- - - - - - 
- - 
- - 

/ - 

Fo C- c+ c+/c- - (Po + 1)-1 
-a3 1.0000 -1.0000 -1.000 0.00 

-2.0 1.0483 -1.1883 -1.134 1 .oo 
-1.5 1.0990 -1.7218 -1.566 2.00 
-1.3 1.1530 -2.1960 -1.905 3.33 
-1.2 1.2056 -2.6277 -2.180 5.00 
-1.1 1.3102 -3.6451 -2.782 10.00 
-1.05 1.4300 -5.0013 -3.497 20.00 

TABLE 1. Computed values of C+/C- for various values of Fo 

For small negative values o f t ,  the solution near the origin is self-similar. In fact 
by setting w = tk2, 2 = tTz, G = -g and choosing a suitable expression for H ( t )  the 
surface profile (4.1) reduces to the self-similar form 

19 

(10.18) 
73 
15 

Z cc Q3+7iQ2+49Q--i 

studied by Longuet-Higgins (1976). 

P = --a, G < 0. It is clear that such a solution, with 
When t > 0, the trajectory of (F ,  G )  continues with uniform velocity down the line 

z = a(w- sinh w )  + iVt cosh w + H ,  (10.19) 

and R r O  (10.20) 
is possible with any arbitrary values of the constant velocity V although since R = 0 
the flow is essentially unaccelerated. The question arises : after passing through the 
shock line, what should be the appropriate value of V ?  

This question cannot be answered by direct numerical integration as was done in 
the general case, because as F, + - 01 the Taylor expansions about (Fc, G,) which were 
previously used have a radius o f  convergence which tends to zero in the limit. Hence 
the convergence is non-uniform, and in the limiting case a Taylor expansion is 
invalid. 

However, we may approach the question another way by enquiring what is the 
ratio of the two constant velocities C- and C+ in (9.1) and (9.2). Does the ratio C+/C- 
tend to a finite limit as F, -+ -a ? 
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Table 1 shows the values of C- and C+ calculated by numerical time-stepping and 
extrapolation of F'(t) and G'(t) to t = - 00 and + 00 respectively, for a sequence of 
values of Fo approaching --a. When plotted logarithmically in figure 9 we see that 
they follow rather closely a power law ; in fact 

c+/c- - (Fo+ q - 1  (10.21) 

approximately. We conclude that the upwards velocity of the crest of the surface 
profile should be considered as infinite, in the limiting case. In figure 8 ( b )  we show the 
surface profiles developing in time, but scaled by this infinite velocity. Apart from 
the scaling factor, the solution is quite similar to the finite solution shown in figure 
6(c), beyond about t = 0.2. 

11. The general case p + 0 

p * 0 .  
From $ 5  onwards we have assumed that p = 0. We come now to the general case 

In the first place, since y = a+& we can change the origin of the time t so as to 
make a = 0. Thus 

We shall assume this done, and then suppress the tilde. 

-y=@ where f = t + a / @ .  (11.1) 

From (4.10) the expression for @J becomes simply 

@ E ( F G  +PG)' -p2[(F - tF')' + (G  + tGo2] .  (11.2) 

To simplify the factor multiplying /3' we set 

F = tP(t), G = t-'Q(t) (11.3) 

giving (P'Q+P&')2-~(PE"'+Q'2) = 0, (11.4) 

which can be written 

(Q~-/"t4)P"+2PQP'Q'+ (P2--,6') q2 = 0. (11.5) 

Provided that D G Pz+Q'/t4-/32 > 0 (11.6) 

(1 1.5) defines two characteristic directions in the (P, 9)-plane given by 

P _ -  1 (-PQ/t2*+t2Di) 
&'It4 - P &'-p (11.7) 

As before, if p > 0, a choice of the positive sign in (11.7) annuls the branch point 
which lies below the free surface. The condition (1 1.6) implies now that (P ,  Q )  must 
lie outside the ellipse 

having semi-axes p and pt respectively. This ellipses touches the cusp line, which is 
given by P = -p. 

The time-dependence can be found by differentiating (1 1.2) with respect to t as 
before. Substituting for the second derivatives F and G" from (4.5) we then get 

P2 + Q2/t2 = p", (11.8) 

R = CIA (11.9) 
where now 

(1 1.10) 
C = ( F G + F C ' ) 2 F ' G ' - p 2 ( G + t G ) G ,  
A = (F'G+FG')(F'-G2)-/3't[(F'-tF) G+tFG].  

In terms of P and Q, A can be expressed as 

A / t 2  = (P'&+PQ') (P2-Q'/t4)+$(F"&-PQ'). (11.11) 
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Now substituting for p” from (11.4) we obtain 

A - (PQ‘ +P‘Q) (PP + QQ‘/t4) (PP‘ - &&‘/p) -- 
t 2  P 2  + Q’”t4 

(1  1.12) 

The factor (PP - &Q‘/t4) can be shown to vanish only on the ellipse (1 1.3), and the 
shock line is given by 

(PP’ + QQ‘/t4) = 0. (1 1.13) 
Now (11.13) can be written 

( 1 1.14) 

Since t2P/Q’ is also given by (11.7), we see that the equation of the cusp locus is a 
function only of P and Q/t2, independently of other variables. And it is the same 
equation as in the case /3 = 0 treated earlier, except that now P, &It2 and /3 take the 
place of P, G and a. 

Suppose then that we set 
0 = Q/t2. (1  1.15) 

Then in the (P, &)-plane, but not in the (P,  &)-plane or the ( F ,  G)-plane, the equation 
of the shock line is invariant with respect to the time. So also is the boundary (1  1.8),  
which becomes the ‘circle’ 

P2+&2 = p2, (11.16) 

and also the cusp line, P = -/3. It is clearly advantageous, therefore, to map the 
trajectories of (F,  G )  in the (P, &)-plane, where these crucial features stay put (see 
figure lo), rather than in either of the other two planes, 

12. Typical solutions: /3 =+ 0 
Consider the initial conditions. Unlike the case /3 = 0, the origin of time has now 

been fixed. Moreover in (11.2), /3 defines the scale of the velocities. The solutions to 
(1 1.2) and (4.13) have arbitrary lengthscale, but this is related to their timescale by 
the chosen velocity /3. 

We may assume ,8 > 0. For the solution to be valid below the free surface, pt must 
be positive, hence t > 0. As a ‘typical ’ instant let us take t = 1. The value of (P,  &) 
at time t = 1 then determines the lengthscale of motion. The velocity scale may be 
determined by choice of P‘ (or P’) at time t = 1. The value of &‘ (or G )  is then 
determined by (11.2). Thus through any given point (PI, Q,), at a given time t = 1, 
there is a singly infinite family of solutions, with parameter P;,say. 

To fix the ideas let us take (PI, &,) on the negative &-axis, so Q, = 0. This has the 
advantage that the gradient (Pi,  &;) at the initial point is fixed ; for then 

(12.1) 

(12.2) 

independently of the initial value of P. Therefore the trajectories passing through 
such a point touch either of two fixed lines. These lines are the two tangents from 
(P,,O) to the critical circle Z; see figure 10. 

Figure 10 shows the family of trajectories of (P,&) passing through the typical 
point (PI,&,) = ( -2 ,0 )  on the &-axis. When P; > 0 (figure 10a) each of the 
trajectories tends to an asymptote going to infinity in the upper left-hand quadrant, 
as t + 0. The coefficientsP and G then tend to constant, non-zero values. On the other 
hand if t + + co, then so long as Pi > Picrit x 1.087, each trajectory tends to a limit 

&‘ = (t“)’ = tZ@ + 2t& = t 2 Q  

P‘/Q = * (P”/p”- 1); and so by (1 1.7) 



Highly accelerated, free-surface flows 
2 

1 

0 

Q 

--I 

-2  

- 3  
- 5  -4  - 3  -2  - 1  0 

P 
FIGURE 11. Trajectories through the point (-2,  I )  in the (P ,  &)-plane. 
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point ( - P I  &) on the cusp line (P = -p). Each trajectory also crosses the shock line 
at  some instant t = t,, where P and 0 behave like (t- t,):, as described in $7.  Since the 
limit points of P and Q are not a t  the origin, F and G must behave asymptotically 
like t. The free surface is then of the form 

z - t(Lsinhw+iMcoshw-Pw), (12.3) 
where L and M are constants. This is a cusped curve of fixed shape, with dimensions 
increasing linearly with time. 

However, when 0 <Pi < Picrit the trajectories do not cross the shock line, but 
instead tend to limit points on the &-axis. In the critical case Pi = Picrit the 
trajectory touches the shock line. 

The asymptotic behaviour of F and G at the limit points can be investigated by 
writing 

(12.4) 

where h and p are constants and 6 , ~  tend to 0 in the limit. On substituting in (1  1.2) 
we find to lowest order 

CD = 4(h2-/?2)pZt2, (12.5) 
which must vanish for all values of t .  Hence either h = -,8 or p = 0. The first case 
describes the limit points on the cusp line. The second case describes the limit points 
on the Q-axis. 

For sufficiently small values of Pi, the asymptote to the trajectory as t -+ 0 makes 
an angle greater than 45' with the negative &-axis. Hence the trajectory must 
intersect the second shock line, touching the circle Z: at the point (0,B);  see figure 
10(a). 

On the other hand, when Pi < 0 (figure lob) ,  each trajectory has an asymptote 
P = Po as t -+ 0. It then crosses the shock line and a~ t + co tends to a limit point on 
the negative &-axis. The free surface is asymptotically flat. 

Figure 11 shows the family of trajectories through a point (PI, Q,) lying 08 the 
&-axis. The family contains some curves which cross the cusp line above the point 
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( -p, 0). In these, the free surface develops downward-pointing cusps at a finite time 
t ,  which subsequently develop into loops. There exists a family of such trajectories 
passing through the point (-/3,0). The limiting form of the free surface is derived 
below in Appendix B. 

13. Discussion and conclusions 
We have found and described a class of simple, time-dependent solutions of the 

non-linear equations for potential flow with a free surface which are of special 
interest for two reasons: (a) the free surface can form a cusp, in finite or infinite time, 
and (b )  the flow develops an inertial shock (not related to the formation of the cusp) 
through which it can pass and continue on the other side. At the shock itself the fluid 
velocity, pressure and acceleration become momentarily infinite, but the dis- 
placements are bounded. 

The solutions described in this paper satisfy the boundary conditions for time- 
dependent, irrotational flow exactly. Both gravity and surface tension have of course 
been neglected. This means that the solutions apply strictly only to those parts of the 
flow where the acceleration greatly exceeds g. The role of gravity is simply to help 
set up the initial conditions under which an inertial shock can develop. Since gravity 
and surface tension are always present, the solutions described here must be regarded as 
asymptotic forms to which the actual flow will tend, as is suggested by the 
experiments noted in $1.  However, the range of initial conditions which ultimately 
give rise to a flow having this asymptotic form, though a very interesting problem, 
is beyond the scope of this paper. 

It is natural to ask whether the occurrence of an ‘inertial shock’ is in any way 
related to the formation of a cusp at  the free surface. However, by considering the 
special case of the Dirichlet hyperbola which displays shock behaviour (see Appendix 
A) but no cusp, it will be apparent that the two phenomena are not closely related. 
The Dirichlet hyperbola is, moreover, an exact solution, with no weak discontinuities 
in the interior of the fluid such as occur in the general case (see $ 5 ) .  

Do these weak discontinuities completely negate the interest of these flows in the 
general case ? In our opinion they do not ; because the discontinuities are only weak, 
in a certain sense, it  may be possible to treat each solution as the first in a series of 
approximations to a more exact solution. 

The present model is the beginning to a more extensive study of this hitherto 
unrecognized phenomenon. In future work, the theory will be developed in several 
different directions : 

(i) Analogous solutions in which circular functions of w take the place of 
hyperbolic functions in the expression for z ( o , t ) .  These describe motions that are 
periodic (wave-like) in the x-direction, though not necessarily in time (see Longuet- 
Higgins 1993 a). 

(ii) By adding to the right-hand side of (4.1) two further terms in sinh2w and 
cosh2w respectively one obtains a class of time-dependent solutions in which the 
pressure and acceleration attain very large values near a critical instant, but 
nevertheless remain finite (Longuet-Higgins 1993 b) .  This dismisses any doubts as to 
the physical significance of the model. 

(iii) By allowing the coefficientsF(t) and G(t)  to become complex instead of real, one 
can obtain solutions with a sense of rotation, as was previously done for the Dirichlet 
hyperbola (Longuet-Higgins 1983a, b ) .  These solutions may be applicable to breaking 
waves, particularly plunging breakers, which sometimes develop high accelerations. 
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(iv) There is reason to suspect the existence of analogous axisymmetric solutions, 
in parametric form, which will describe the well-known occurrence of inertial jets in 
collapsing bubbles. 

This work has been supported by the Office of Naval Research under Grant No. 
N00014-91-J-1582. 

Appendix A. Particle paths in a Dirichlet hyperbola 
Equations (3 .5)  and (3.11) admit an exact analytic solution as follows. Let us write 

(A 1) B = F / F  = - G I G  

so that 

where we have chosen the unit of length so that the constant on the right of (3.11) 
equals - 1. Then on differentiating (A 1) we have 

(1 -B’)Pf2+ (1 +B’) C” = FF”+ G G  = 0 

(B’- l)F2 = (B’+ 1 )  G2, 
(A 3 )  

(A 4) by (3 .5) .  Hence 

and on differentiating each side logarithmically we get 

B 2 B 2  +- = --_ 
B B’+l B’ 

hence B B t 2 B 2  = 2. 

A first integration yields 

say, by choice of the unit of time. Therefore 

B4B2 -B4 = constant = 1, 

Bfa  = ( 1  +B4)/B4 

and so 

We may choose the origin of time at B = 0. It follows from (A 2) that 

and that G = - l/F. The path of a particle at  the free surface (w fixed and real) 
relative to a frame moving downwards with speed V is now given parametrically by 

x = F sinh w ,  y = Vt -F-l cosh w. (A 11) 

(A 12) 

When B < 1 we have from (A 9) that t - g3, so B - (3t)i and so from (A 10) 

F - I fB(3t)) .  

Thus the particle velocity becomes infinite like t4 and there is a typical weak ‘shock’. 

16 P1.M 9dQ 
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-2 - 1  0 1 2 

FIGURE 12. Particle paths in a Dirichlet hyperbola. (a)  V = 0; ( b )  V = 2. 

In the special case V = 0, the particle paths satisfy xy = constant and all are 
hyperbolae; see figure 12(a). The large velocities near t = 0 are not immediately 
obvious. However, if we view the trajectories in a moving reference frame by taking 
V = 2, for example, we get figure 12 ( b ) ,  in which the typical S-shaped kinks appear. 

This shows that the kinks are in a sense artifacts of the reference frame. On the 
other hand they could be useful experimentally as a diagnostic for weak shocks. 
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Appendix B. The limiting form of trajectories through the point (-/3,0) as 
t +  03 

expansions 

where u is a negative index. Substituting into (1 1.2)  and (4.1 1) we find to lowest order 

For large values of the time t ,  the coefficients F and G have the asymptotic 

F = -/?t( I +a, t2v+a, t4”+ .  . .), G = /?t(b, t”+ b, t 3 ” + ,  . .). (B 1 )  

@I [ 2 ( ~ + 2 ) ( 3 ~ + 2 ) a , b ~ - ( 2 u ) ~ a 3 t ~ ” + ~  = 0 (B 2) 

and F F + G G  I [ 2 u ( 2 u + 1 ) a , + v ( u + 1 ) b ~ ] t 2 ” =  0 (B 3) 
respectively. On eliminating the ratio a,/b; from these equations we obtain a cubic 
equation : 

7 ~ ~ + 2 0 ~ ~ + 1 6 ~ + 4  = 0 

for the exponent u, which has only one real solution, 

v = - 1.7231. 

Correspondingly we find a,/b: = -0.1478. 

namely 

When o/t“ 6 1 it is easily shown that the free surface has the self-similar form 

(B 7) 
3i 3 i = @--Q2- 

v+ 1 ( v +  1 ) ( 2 u +  p + ( U +  1)(2v+ 1 ) (3u+i )  

in which 
-6  z 

and z=-- 
( u + I ) w  a=-- 

bi t” (u+ 1 ) 3 t 3 v + i 9  

(see Longuet-Higgins 1976, $9). 
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